-
pdf Contextual In-Situ Help for Visual Data Interfaces ↗
Click to read abstract
As the complexity of data analysis increases, even well-designed data interfaces must guide experts in transforming their theoretical knowledge into actual features supported by the tool. This challenge is even greater for casual users who are increasingly turning to data analysis to solve everyday problems. To address this challenge, we propose data-driven, contextual, in-situ help features that can be implemented in visual data interfaces. We introduce five modes of help-seeking: (1) contextual help on selected interface elements, (2) topic listing, (3) overview, (4) guided tour, and (5) notifications. The difference between our work and general user interface help systems is that data visualization provide a unique environment for embedding context-dependent data inside on-screen messaging. We demonstrate the usefulness of such contextual help through two case studies of two visual data interfaces: Keshif and POD-Vis. We implemented and evaluated the help modes with two sets of participants, and found that directly selecting user interface elements was the most useful.
-
pdf Metaviz: interactive statistical and visual analysis of metagenomic data ↗
Anup MahurkarClick to read abstract
Large studies profiling microbial communities and their association with healthy or disease phenotypes are now commonplace. Processed data from many of these studies are publicly available but significant effort is required for users to effectively organize, explore and integrate it, limiting the utility of these rich data resources. Effective integrative and interactive visual and statistical tools to analyze many metagenomic samples can greatly increase the value of these data for researchers. We present Metaviz, a tool for interactive exploratory data analysis of annotated microbiome taxonomic community profiles derived from marker gene or whole metagenome shotgun sequencing. Metaviz is uniquely designed to address the challenge of browsing the hierarchical structure of metagenomic data features while rendering visualizations of data values that are dynamically updated in response to user navigation. We use Metaviz to provide the UMD Metagenome Browser web service, allowing users to browse and explore data for more than 7000 microbiomes from published studies. Users can also deploy Metaviz as a web service, or use it to analyze data through the metavizr package to interoperate with state-of-the-art analysis tools available through Bioconductor. Metaviz is free and open source with the code, documentation and tutorials publicly accessible.