-
pdf TopoText: Context-Preserving Semantic Exploration Across Multiple Spatial Scales ↗
Click to read abstract
TopoText is a context-preserving technique for visualizing semantic data for multi-scale spatial aggregates to gain insight into spatial phenomena. Conventional exploration requires users to navigate across multiple scales but only presents the information related to the current scale. This limitation potentially adds more steps of interaction and cognitive overload to the users. TopoText renders multi-scale aggregates into a single visual display combining novel text-based encoding and layout methods that draw labels along the boundary or filled within the aggregates. The text itself not only summarizes the semantics at each individual scale, but also indicates the spatial coverage of the aggregates and their underlying hierarchical
-
pdf TopoGroups: Context-Preserving Visual Illustration of Multi-Scale Spatial Aggregates ↗
Click to read abstract
Spatial datasets, such as tweets in a geographic area, often exhibit different distribution patterns at multiple levels of scale, such as live updates about events occurring in very specific locations on the map. Navigating in such multi-scale data-rich spaces is often inefficient, requires users to choose between overview or detail information, and does not support identifying spatial patterns at varying scales. In this paper, we propose TopoGroups, a novel context-preserving technique that aggregates spatial data into hierarchical clusters to improve exploration and navigation at multiple spatial scales. The technique uses a boundary distortion algorithm to minimize the visual clutter caused by overlapping aggregates. Our user study explores multiple visual encoding strategies for TopoGroups including color, transparency, shading, and shapes in order to convey the hierarchical and statistical information of the geographical aggregates at different scales.