-
pdf TopoText: Context-Preserving Semantic Exploration Across Multiple Spatial Scales ↗
Click to read abstract
TopoText is a context-preserving technique for visualizing semantic data for multi-scale spatial aggregates to gain insight into spatial phenomena. Conventional exploration requires users to navigate across multiple scales but only presents the information related to the current scale. This limitation potentially adds more steps of interaction and cognitive overload to the users. TopoText renders multi-scale aggregates into a single visual display combining novel text-based encoding and layout methods that draw labels along the boundary or filled within the aggregates. The text itself not only summarizes the semantics at each individual scale, but also indicates the spatial coverage of the aggregates and their underlying hierarchical
-
pdf TopoGroups: Context-Preserving Visual Illustration of Multi-Scale Spatial Aggregates ↗
Click to read abstract
Spatial datasets, such as tweets in a geographic area, often exhibit different distribution patterns at multiple levels of scale, such as live updates about events occurring in very specific locations on the map. Navigating in such multi-scale data-rich spaces is often inefficient, requires users to choose between overview or detail information, and does not support identifying spatial patterns at varying scales. In this paper, we propose TopoGroups, a novel context-preserving technique that aggregates spatial data into hierarchical clusters to improve exploration and navigation at multiple spatial scales. The technique uses a boundary distortion algorithm to minimize the visual clutter caused by overlapping aggregates. Our user study explores multiple visual encoding strategies for TopoGroups including color, transparency, shading, and shapes in order to convey the hierarchical and statistical information of the geographical aggregates at different scales.
-
pdf A Mobile Visual Analytics Approach for Law Enforcement Situation Awareness ↗
Ross MaciejewskiClick to read abstract
The advent of modern smartphones and handheld devices has given analysts, decision-makers, and even the general public the ability to rapidly ingest data and translate it into actionable information on-the-go. In this paper, we explore the design and use of a mobile visual analytics toolkit for public safety data that equips law enforcement agencies with effective situation awareness and risk assessment tools. Our system provides users with a suite of interactive tools that allow them to perform analysis and detect trends, patterns and anomalies among criminal, traffic and civil (CTC) incidents. The system also provides interactive risk assessment tools that allow users to identify regions of potential high risk and determine the risk at any user-specified location and time. Our system has been designed for the iPhone/iPad environment and is currently being used and evaluated by a consortium of law enforcement agencies. We report their use of the system and some initial feedback.
-
Conference Paper#27
doi A Correlative Analysis Process in a Visual Analytics Environment ↗
Click to read abstract
Finding patterns and trends in spatial and temporal datasets has been a long studied problem in statistics and different domains of science. This paper presents a visual analytics approach for the interactive exploration and analysis of spatiotemporal correlations among multivariate datasets. Our approach enables users to discover correlations and explore potentially causal or predictive links at different spatiotemporal aggregation levels among the datasets, and allows them to understand the underlying statistical foundations that precede the analysis. Our technique utilizes the Pearson's product-moment correlation coefficient and factors in the lead or lag between different datasets to detect trends and periodic patterns amongst them.
-
pdf Spatial Text Visualization Using Automatic Typographic Maps ↗
Click to read abstract
We present a method for automatically building typographic maps that merge text and spatial data into a visual representation where text alone forms the graphical features. We further show how to use this approach to visualize spatial data such as traffic density, crime rate, or demographic data. The technique accepts a vector representation of a geographic map and spatializes the textual labels in the space onto polylines and polygons based on user-defined visual attributes and constraints. Our sample implementation runs as a Web service, spatializing shape files from the OpenStreetMap project into typographic maps for any region.