-
pdf Lodestar: Supporting Independent Learning and Rapid Experimentation Through Data-Driven Analysis Recommendations ↗
Zhe CuiClick to read abstract
Keeping abreast of current trends, technologies, and best practices in visualization and data analysis is becoming increasingly difficult, especially for fledgling data scientists. In this paper, we propose Lodestar, an interactive computational notebook that allows users to quickly explore and construct new data science workflows by selecting from a list of automated analysis recommendations. We derive our recommendations from directed graphs of known analysis states, with two input sources: one manually curated from online data science tutorials, and another extracted through semi-automatic analysis of a corpus of over 6,000 Jupyter notebooks. We evaluate Lodestar in a formative study guiding our next set of improvements to the tool. Our results suggest that users find Lodestar useful for rapidly creating data science workflows.
-
pdf Proactive Visual and Statistical Analysis of Genomic Data in Epiviz ↗
Click to read abstract
In this article, we present Epiviz Feed, a proactive and automatic visual analytics system integrated with Epiviz that alleviates the burden of manually executing data analysis required to test biologically meaningful hypotheses. Results of interest that are proactively identified by server-side computations are listed as notifications in a feed. The feed turns genomic data analysis into a collaborative work between the analyst and the computational environment, which shortens the analysis time and allows the analyst to explore results efficiently.
-
pdf Sherpa: Leveraging User Attention for Computational Steering in Visual Analytics ↗
Click to read abstract
We present Sherpa, a computational steering mechanism for progressive visual analytics that automatically prioritizes computations based on the analyst’s navigational behavior in the data. The intuition is that navigation in data space is an indication of the analyst's interest in the data. Sherpa implementation provides computational modules, such as statistics of biological inferences about gene regulation. The position of the navigation window on the genomic sequence over time is used to prioritize computations. In a study with genomic and visualization analysts, we found that Sherpa provided comparable accuracy to the offline condition, where computations were completed prior to analysis, with shorter completion times. We also provide a second example on stock market analysis.
-
pdf DataSite: Proactive Visual Data Exploration with Computation of Insight-based Recommendations ↗
Click to read abstract
Effective data analysis ideally requires the analyst to have high expertise as well as high knowledge of the data. Even with such familiarity, manually pursuing all potential hypotheses and exploring all possible views is impractical. We present DataSite, a proactive visual analytics system where the burden of selecting and executing appropriate computations is shared by an automatic server-side computation engine. Salient features identified by these automatic background processes are surfaced as notifications in a feed timeline. DataSite effectively turns data analysis into a conversation between analyst and computer, thereby reducing the cognitive load and domain knowledge requirements. We validate the system with a user study comparing it to a recent visualization recommendation system, yielding significant improvement, particularly for complex analyses that existing analytics systems do not support well.
-
pdf VisHive: Supporting Web-based Visualization through Ad-hoc Computational Clusters of Mobile Devices ↗
Click to read abstract
Current web-based visualizations are designed for single computers and cannot make use of additional devices on the client side, even if today’s users often have access to several, such as a tablet, a smartphone, and a smartwatch. We present a framework for ad-hoc computational clusters that leverage these local devices for visualization computations. Furthermore, we present an instantiating JavaScript toolkit called VisHive for constructing web-based visualization applications that can transparently connect multiple devices---called cells---into such ad-hoc clusters---called a hive---for local computation. Hives are formed either using a matchmaking service or through manual configuration. Cells are organized into a master-slave architecture, where the master provides the visual interface to the user and controls the slaves, and the slaves perform computation. VisHive is built entirely using current web technologies, runs in the native browser of each cell, and requires no specific software to be downloaded on the involved devices. We demonstrate VisHive using four distributed examples: a text analytics visualization, a database query for exploratory visualization, a