-
pdf Causality Visualization Using Animated Growing Polygons ↗
Click to read abstract
We present Growing Polygons, a novel visualization technique for the graphical representation of causal relations and information flow in a system of interacting processes. Using this method, individual processes are displayed as partitioned polygons with color-coded segments showing dependencies to other processes. The entire visualization is also animated to communicate the dynamic execution of the system to the user. The results from a comparative user study of the method show that the Growing Polygons technique is significantly more efficient than the traditional Hasse diagram visualization for analysis tasks related to deducing information flow in a system for both small and large executions. Furthermore, our findings indicate that the correctness when solving causality tasks is significantly improved using our method. In addition, the subjective ratings of the users rank the method as superior in all regards, including usability, efficiency, and enjoyability.
-
pdf Growing Squares: Animated Visualization of Causal Relations ↗
Click to read abstract
We present a novel information visualization technique for the graphical representation of causal relations, that is based on the metaphor of color pools spreading over time on a piece of paper. Messages between processes in the system affect the colors of their respective pool, making it possible to quickly see the influences each process has received. This technique, called Growing Squares, has been evaluated in a comparative user study and shown to be significantly faster and more efficient for sparse data sets than the traditional Hasse diagram visualization. Growing Squares were also more efficient for large data sets, but not significantly so. Test subjects clearly favored Growing Squares over old methods, naming the new technique easier, more efficient, and much more enjoyable to use.