-
pdf Bridging the Data Analysis Communication Gap Utilizing a Three-Component Summarized Line Graph ↗
Click to read abstract
Communication‐minded visualizations are designed to provide their audience—managers, decision‐makers, and the public—with new knowledge. Authoring such visualizations effectively is challenging because the audience often lacks the expertise, context, and time that professional analysts have at their disposal to explore and understand datasets. We present a novel summarized line graph visualization technique designed specifically for data analysts to communicate data to decision‐makers more effectively and efficiently. Our summarized line graph reduces a large and detailed dataset of multiple quantitative time‐series into (1) representative data that provides a quick takeaway of the full dataset; (2) analytical highlights that distinguish specific insights of interest; and (3) a data envelope that summarizes the remaining aggregated data. Our summarized line graph achieved the best overall results when evaluated against line graphs, band graphs, stream graphs, and horizon graphs on four representative tasks.
-
pdf TopoText: Context-Preserving Semantic Exploration Across Multiple Spatial Scales ↗
Click to read abstract
TopoText is a context-preserving technique for visualizing semantic data for multi-scale spatial aggregates to gain insight into spatial phenomena. Conventional exploration requires users to navigate across multiple scales but only presents the information related to the current scale. This limitation potentially adds more steps of interaction and cognitive overload to the users. TopoText renders multi-scale aggregates into a single visual display combining novel text-based encoding and layout methods that draw labels along the boundary or filled within the aggregates. The text itself not only summarizes the semantics at each individual scale, but also indicates the spatial coverage of the aggregates and their underlying hierarchical
-
pdf TopoGroups: Context-Preserving Visual Illustration of Multi-Scale Spatial Aggregates ↗
Click to read abstract
Spatial datasets, such as tweets in a geographic area, often exhibit different distribution patterns at multiple levels of scale, such as live updates about events occurring in very specific locations on the map. Navigating in such multi-scale data-rich spaces is often inefficient, requires users to choose between overview or detail information, and does not support identifying spatial patterns at varying scales. In this paper, we propose TopoGroups, a novel context-preserving technique that aggregates spatial data into hierarchical clusters to improve exploration and navigation at multiple spatial scales. The technique uses a boundary distortion algorithm to minimize the visual clutter caused by overlapping aggregates. Our user study explores multiple visual encoding strategies for TopoGroups including color, transparency, shading, and shapes in order to convey the hierarchical and statistical information of the geographical aggregates at different scales.
-
pdf TimeFork: Interactive Prediction of Time Series ↗
Click to read abstract
We present TimeFork, an interactive prediction technique to support users predicting the future of time-series data, such as in financial, scientific, or medical domains. TimeFork combines visual representations of multiple time series with prediction information generated by computational models. Using this method, analysts engage in a back-and-forth dialogue with the computational model by alternating between manually predicting future changes through interaction and letting the model automatically determine the most likely outcomes, to eventually come to a common prediction using the model. This computer-supported prediction approach allows for harnessing the user’s knowledge of factors influencing future behavior, as well as sophisticated computational models drawing on past performance. To validate the TimeFork technique, we conducted a user study in a stock market prediction game. We present evidence of improved performance for participants using TimeFork compared to fully manual or fully automatic predictions, and characterize qualitative usage patterns observed during the user study.
-
pdf VASA: Interactive Computational Steering of Large Asynchronous Simulation Pipelines for Societal Infrastructure ↗
David S. EbertClick to read abstract
We present VASA, a visual analytics platform consisting of a desktop application, a component model, and a suite of distributed simulation components for modeling the impact of societal threats such as weather, food contamination, and traffic on critical infrastructure such as supply chains, road networks, and power grids. Each component encapsulates a high-fidelity simulation model that together form an asynchronous simulation pipeline: a system of systems of individual simulations with a common data and parameter exchange format. At the heart of VASA is theWorkbench, a visual analytics application providing three distinct features: (1) low-fidelity approximations of the distributed simulation components using local simulation proxies to enable analysts to interactively configure a simulation run; (2) computational steering mechanisms to manage the execution of individual simulation components; and (3) spatiotemporal and interactive methods to explore the combined results of a simulation run. We showcase the utility of the platform using examples involving supply chains during a hurricane as well as food contamination in a fast food restaurant chain.
-
pdf A Mobile Visual Analytics Approach for Law Enforcement Situation Awareness ↗
David S. EbertClick to read abstract
The advent of modern smartphones and handheld devices has given analysts, decision-makers, and even the general public the ability to rapidly ingest data and translate it into actionable information on-the-go. In this paper, we explore the design and use of a mobile visual analytics toolkit for public safety data that equips law enforcement agencies with effective situation awareness and risk assessment tools. Our system provides users with a suite of interactive tools that allow them to perform analysis and detect trends, patterns and anomalies among criminal, traffic and civil (CTC) incidents. The system also provides interactive risk assessment tools that allow users to identify regions of potential high risk and determine the risk at any user-specified location and time. Our system has been designed for the iPhone/iPad environment and is currently being used and evaluated by a consortium of law enforcement agencies. We report their use of the system and some initial feedback.
-
Conference Paper#27
doi A Correlative Analysis Process in a Visual Analytics Environment ↗
Click to read abstract
Finding patterns and trends in spatial and temporal datasets has been a long studied problem in statistics and different domains of science. This paper presents a visual analytics approach for the interactive exploration and analysis of spatiotemporal correlations among multivariate datasets. Our approach enables users to discover correlations and explore potentially causal or predictive links at different spatiotemporal aggregation levels among the datasets, and allows them to understand the underlying statistical foundations that precede the analysis. Our technique utilizes the Pearson's product-moment correlation coefficient and factors in the lead or lag between different datasets to detect trends and periodic patterns amongst them.
-
pdf Spatial Text Visualization Using Automatic Typographic Maps ↗
Click to read abstract
We present a method for automatically building typographic maps that merge text and spatial data into a visual representation where text alone forms the graphical features. We further show how to use this approach to visualize spatial data such as traffic density, crime rate, or demographic data. The technique accepts a vector representation of a geographic map and spatializes the textual labels in the space onto polylines and polygons based on user-defined visual attributes and constraints. Our sample implementation runs as a Web service, spatializing shape files from the OpenStreetMap project into typographic maps for any region.
-
pdf Leveraging Multidisciplinarity in a Visual Analytics Graduate Course ↗
David S. EbertClick to read abstract
There is a growing demand in engineering, business, science, research, and industry for members with visual analytics expertise, but teaching visual analytics is challenging due to the multidisciplinary nature of the topic matter, the diverse backgrounds of the members, and the corresponding requirements on the instructor. We report some best practices from our experience teaching several offerings of a visual analytics graduate course at Purdue University where we leveraged these multidisciplinary challenges to our advantage instead of attempting to mitigate them.
-
pdf Evaluating the Role of Time in Investigative Analysis of Document Collections ↗
Click to read abstract
Time is a universal and essential aspect of data in any investigative analysis. It helps analysts establish causality, build storylines from evidence, and reject infeasible hypotheses. For this reason, many investigative analysis tools provide visual representations designed for making sense of temporal data. However, the field of visual analytics still needs more evidence explaining how temporal visualization actually aids the analysis process, as well as design recommendations for how to build these visualizations. To fill this gap, we conducted an insight-based qualitative study to investigate the influence of temporal visualization on investigative analysis. We found that visualizing temporal information helped participants externalize chains of events. Another contribution of our work is the lightweight evaluation approach used to collect, visualize, and analyze insight.
-
pdf WordBridge: Using Composite Tag Clouds in Node-Link Diagrams for Visualizing Content and Relations in Text Corpora ↗
Click to read abstract
We introduce WordBridge, a novel graph-based visualization technique for showing relationships between entities in text corpora. The technique is a node-link visualization where both nodes and links are tag clouds. Using these tag clouds, WordBridge can reveal relationships by representing not only entities and their connections, but also the nature of their relationship using representative keywords for nodes and edges. In this paper, we apply the technique to an interactive web-based visual analytics environment---Apropos---where a user can explore a text corpus using WordBridge. We validate the technique using several case studies based on document collections such as intelligence reports, co-authorship networks, and works of fiction.