-
pdf Color Lens: Adaptive Color Scale Optimization for Visual Exploration ↗
Click to read abstract
Visualization applications routinely map quantitative attributes to color using color scales. Although color is an effective visualization channel, it is limited by both display hardware and the human visual system. We propose a new interaction technique that overcomes these limitations by dynamically optimizing color scales based on a set of sampling lenses. The technique inspects the lens contents in data space, optimizes the initial color scale, and then renders the contents of the lens to the screen using the modified color scale. We present two prototype implementations of this pipeline and describe several case studies involving both information visualization and image inspection applications. We validate our approach with two mutually linked and complementary user studies comparing the Color Lens with explicit contrast control for visual search.
-
pdf Dynamic Insets for Context-Aware Graph Navigation ↗
Click to read abstract
Maintaining both overview and detail while navigating in graphs, such as road networks, airline route maps, or social networks, is difficult, especially when targets of interest are located far apart. We present a navigation technique called Dynamic Insets that provides context awareness for graph navigation. Dynamic insets utilize the topological structure of the network to draw a visual inset for off-screen nodes that shows a portion of the surrounding area for links leaving the edge of the screen. We implement dynamic insets for general graph navigation as well as geographical maps. We also present results from a set of user studies that show that our technique is more efficient than most of the existing techniques for graph navigation in different networks.
-
pdf Temporal Distortion for Animated Transitions ↗
Click to read abstract
Animated transitions are popular in many visual applications but they can be difficult to follow, especially when many objects move at the same time. One informal design guideline for creating effective animated transitions has long been the use of slow-in/slow-out pacing, but no empirical data exist to support this practice. We remedy this by studying object tracking performance under different conditions of temporal distortion, i.e., constant speed transitions, slow-in/slow-out, fast-in/fast-out, and an adaptive technique that slows down the visually complex parts of the animation. Slow-in/slow-out outperformed other techniques, but we saw technique differences depending on the type of visual transition.
-
pdf Improving Revisitation in Graphs through Static Spatial Features ↗
Click to read abstract
People generally remember locations in visual spaces with respect to spatial features and landmarks. Geographical maps provide many spatial features and hence are easy to remember. However, graphs are often visualized as node-link diagrams with few spatial features. We evaluate whether adding static spatial features to node-link diagrams will help in graph revisitation. We discuss three strategies for embellishing a graph and evaluate each in a user study. In our first study, we evaluate how to best add background features to a graph. In the second, we encode position using node size and color. In the third and final study, we take the best techniques from the first and second study, as well as shapes added to the graph as virtual landmarks, to find the best combination of spatial features for graph revisitation. We discuss the user study results and give our recommendations for design of graph visualization software.
-
pdf Evaluating Physical/Virtual Occlusion Management Techniques for Horizontal Displays ↗
Click to read abstract
We evaluate unguided and guided visual search performance for a set of techniques that mitigate occlusion between physical and virtual objects on a tabletop display. The techniques are derived from a general model of hybrid physical/virtual occlusion, and take increasingly drastic measures to make the user aware of, identify, and access hidden objects---but with increasingly space-consuming and disruptive impact on the display. Performance is different depending on the visual display, suggesting a tradeoff between management strength and visual space deformation.
-
pdf WordBridge: Using Composite Tag Clouds in Node-Link Diagrams for Visualizing Content and Relations in Text Corpora ↗
Click to read abstract
We introduce WordBridge, a novel graph-based visualization technique for showing relationships between entities in text corpora. The technique is a node-link visualization where both nodes and links are tag clouds. Using these tag clouds, WordBridge can reveal relationships by representing not only entities and their connections, but also the nature of their relationship using representative keywords for nodes and edges. In this paper, we apply the technique to an interactive web-based visual analytics environment---Apropos---where a user can explore a text corpus using WordBridge. We validate the technique using several case studies based on document collections such as intelligence reports, co-authorship networks, and works of fiction.
-
pdf Applying Mobile Device Soft Keyboards to Collaborative Multitouch Tabletop Displays: Design and Evaluation ↗
Click to read abstract
We present an evaluation of text entry methods for tabletop displays given small display space allocations, an increasingly important design constraint as tabletops become collaborative platforms. Small space is already a requirement of mobile text entry methods, and these can often be easily ported to tabletop settings. The purpose of this work is to determine whether these mobile text entry methods are equally useful for tabletop displays, or whether there are unique aspects of text entry on large, horizontal surfaces that influence design. Our evaluation consists of two studies designed to elicit differences between the mobile and tabletop domains. Results show that standard soft keyboards perform best, even at small space allocations. Furthermore, occlusion-reduction methods like Shift do not yield significant improvements to text entry; we speculate that this is due to the low ratio of resolution per surface units (i.e., DPI) for current tabletops.
-
pdf Direct Manipulation Through Surrogate Objects ↗
Click to read abstract
Direct manipulation has had major influence on interface design since it was proposed by Shneiderman in 1982. Although directness generally benefits users, direct manipulation also has weaknesses. In some cases, such as when a user needs to manipulate small, attribute-rich objects or multiple objects simultaneously, indirect manipulation may be more efficient at the cost of directness or intuitiveness of the interaction. Several techniques have been developed over the years to address these issues, but these are all isolated and limited efforts with no coherent underlying principle. We propose the notion of Surrogate Interaction that ties together a large subset of these techniques through the use of a surrogate object that allow users to interact with the surrogate instead of the domain object. We believe that formalizing this family of interaction techniques will provide an additional and powerful interface design alternative for interaction designers, as well as uncover opportunities for future research.
-
pdf Fluid Interaction for Information Visualization ↗
Click to read abstract
Despite typically receiving little emphasis in visualization research, interaction in visualization is the catalyst for the user's dialogue with the data, and, ultimately, the user’s actual understanding and insight into this data. There are many possible reasons for this skewed balance between the visual and interactive aspects of a visualization. One reason is that interaction is an intangible concept that is difficult to design, quantify, and evaluate. Unlike for visual design, there are few examples that show visualization practitioners and researchers how to best design the interaction for a new visualization. In this paper, we attempt to address this issue by collecting examples of visualizations with "best-in-class" interaction and using them to extract practical design guidelines for future designers and researchers. We call this concept fluid interaction, and we propose an operational definition in terms of the direct manipulation and embodied interaction paradigms, the psychological concept of "flow", and Norman’s gulfs of execution and evaluation.
-
pdf Collaborative Visualization: Definition, Challenges, and Research Agenda ↗
Click to read abstract
The conflux of two growing areas of technology---collaboration and visualization---into a new research direction, collaborative visualization, provides new research challenges. Technology now allows us to easily connect and collaborate with one another---in settings as diverse as over networked computers, across mobile devices, or using shared displays such as interactive walls and tabletop surfaces. Digital information is now regularly accessed by multiple people in order to share information, to view it together, to analyze it, or to form decisions. Visualizations are used to deal more effectively with large amounts of information while interactive visualizations allow users to explore the underlying data. While researchers face many challenges in collaboration and in visualization, the emergence of collaborative visualization poses additional challenges but is also an exciting opportunity to reach new audiences and applications for visualization tools and techniques.