-
pdf Common Fate for Animated Transitions in Visualization ↗
Click to read abstract
The Law of Common Fate from Gestalt psychology states that visual objects moving with the same velocity along parallel trajectories will be perceived by a human observer as grouped. However, the concept of common fate is much broader than mere velocity; in this paper we explore how common fate results from coordinated changes in luminance and size. We present results from a crowdsourced graphical perception study where we asked workers to make perceptual judgments on a series of trials involving four graphical objects under the influence of conflicting static and dynamic visual factors (position, size and luminance) used in conjunction. Our results yield the following rankings for visual grouping: motion > (dynamic luminance, size, luminance); dynamic size > (dynamic luminance, position); and dynamic luminance > size. We also conducted a follow-up experiment to evaluate the three dynamic visual factors in a more ecologically valid setting, using both a Gapminder-like animated scatterplot and a thematic map of election data. The results indicate that in practice the relative grouping strengths of these factors may depend on various parameters including the visualization characteristics and the underlying data. We discuss design implications for animated transitions in data visualization.
-
pdf Observations and Reflections on Visualization Literacy at the Elementary School Level ↗
Click to read abstract
In this article, we share our reflections on visualization literacy and how it might be better developed in early education. We base this on lessons we learned while studying how teachers instruct, and how members acquire basic visualization principles and skills in elementary school. We use these findings to propose directions for future research on visualization literacy.
-
pdf GraphDice: A System for Exploring Multivariate Social Networks ↗
Click to read abstract
Social networks collected by historians or sociologists typically have a large number of actors and edge attributes. Applying social network analysis (SNA) algorithms to these networks produces additional attributes such as degree, centrality, and clustering coefficients. Understanding the effects of this plethora of attributes is one of the main challenges of multivariate SNA. We present the design of GraphDice, a multivariate network visualization system for exploring the attribute space of edges and actors. GraphDice builds upon the ScatterDice system for its main multidimensional navigation paradigm, and extends it with novel mechanisms to support network exploration in general and SNA tasks in particular. Novel mechanisms include visualization of attributes of interval type and projection of numerical edge attributes to node attributes. We show how these extensions to the original ScatterDice system allow to support complex visual analysis tasks on networks with hundreds of actors and up to 30 attributes, while providing a simple and consistent interface for interacting with network data.