-
pdf Scents and Sensibility: Evaluating Information Olfactation ↗
Click to read abstract
Olfaction---the sense of smell---is one of the least explored of the human senses for conveying abstract information. In this paper, we conduct a comprehensive perceptual experiment on information olfactation: the use of olfactory and crossmodal sensory marks and channels to convey data. More specifically, following the example from graphical perception studies, we design an experiment that studies the perceptual accuracy of four cross-modal sensory channels---scent type, scent intensity, airflow, and temperature---for conveying three different types of data---nominal, ordinal, and quantitative. We also present details of a 24-scent multi-sensory display
-
doi Using Social Interaction Trace Data and Context to Predict Collaboration Quality and Creative Fluency in Collaborative Design Learning Environments ↗
Click to read abstract
Engineering design typically occurs as a collaborative process situated in specific context such as computer-supported environments, however there is limited research examining the dynamics of design collaboration in specific contexts. In this study, drawing from situative learning theory, we developed two analytic lenses to broaden theoretical insights into collaborative design practices in computer-supported environments: (a) the role of spatial and material context, and (b) the role of social interactions. We randomly assigned participants to four conditions varying the material context (paper vs. tablet sketching tools) and spatial environment (private room vs commons area) as they worked collaboratively to generate ideas for a toy design task. We used wearable sociometric badges to automatically and unobtrusively collect social interaction data. Using partial least squares regression, we generated two predictive models for collaboration quality and creative fluency. We found that context matters materially to perceptions of collaboration, where those using collaboration-support tools perceived higher quality collaboration. But context matters spatially to creativity, and those situated in private spaces are more fluent in generating ideas than those in commons areas. We also found that interaction dynamics differ: synchronous interaction is important to quality collaboration, but reciprocal interaction is important to creative fluency. These findings provide important insights into the processual factors in collaborative design in computer-supported environments, and the predictive role of context and conversation dynamics. We discuss the theoretical contributions to computer-supported collaborative design, the methodological contributions of wearable sensor tools, and the practical contributions to structuring computer-supported environments for engineering design practice.
-
pdf Common Fate for Animated Transitions in Visualization ↗
Click to read abstract
The Law of Common Fate from Gestalt psychology states that visual objects moving with the same velocity along parallel trajectories will be perceived by a human observer as grouped. However, the concept of common fate is much broader than mere velocity; in this paper we explore how common fate results from coordinated changes in luminance and size. We present results from a crowdsourced graphical perception study where we asked workers to make perceptual judgments on a series of trials involving four graphical objects under the influence of conflicting static and dynamic visual factors (position, size and luminance) used in conjunction. Our results yield the following rankings for visual grouping: motion > (dynamic luminance, size, luminance); dynamic size > (dynamic luminance, position); and dynamic luminance > size. We also conducted a follow-up experiment to evaluate the three dynamic visual factors in a more ecologically valid setting, using both a Gapminder-like animated scatterplot and a thematic map of election data. The results indicate that in practice the relative grouping strengths of these factors may depend on various parameters including the visualization characteristics and the underlying data. We discuss design implications for animated transitions in data visualization.
-
pdf There Is No Spoon: Evaluating Performance, Space Use, and Presence with Expert Domain Users in Immersive Analytics ↗
Click to read abstract
Immersive analytics turns the very space surrounding the user into a canvas for data analysis, supporting human cognitive abilities in myriad ways. We present the results of a design study, contextual inquiry, and longitudinal evaluation involving professional economists using a Virtual Reality (VR) system for multidimensional visualization to explore actual economic data. Results from our preregistered evaluation highlight the varied use of space depending on context (exploration vs. presentation), the organization of space to support work, and the impact of immersion on navigation and orientation in the 3D analysis space.
-
pdf The Perceptual Proxies of Visual Comparison ↗
Click to read abstract
Perceptual tasks in visualizations often involve comparisons. Of two sets of values depicted in two charts, which set had values that were the highest overall? Which had the widest range? Prior empirical work found that the performance on different visual comparison tasks (e.g., "biggest delta", "biggest correlation") varied widely across different combinations of marks and spatial arrangements. In this paper, we expand upon these combinations in an empirical evaluation of two new comparison tasks: the "biggest mean" and "biggest range" between two sets of values. We used a staircase procedure to titrate the difficulty of the data comparison to assess which arrangements produced the most precise comparisons for each task. We find visual comparisons of biggest mean and biggest range are supported by some chart arrangements more than others, and that this pattern is substantially different from the pattern for other tasks. To synthesize these dissonant findings, we argue that we must understand which features of a visualization are actually used by the human visual system to solve a given task. We call these perceptual proxies. For example, when comparing the means of two bar charts, the visual system might use a "Mean length" proxy that isolates the actual lengths of the bars and then constructs a true average across these lengths. Alternatively, it might use a "Hull Area" proxy that perceives an implied hull bounded by the bars of each chart and then compares the areas of these hulls. We propose a series of potential proxies across different tasks, marks, and spatial arrangements. Simple models of these proxies can be empirically evaluated for their explanatory power by matching their performance to human performance across these marks, arrangements, and tasks. We use this process to highlight candidates for perceptual proxies that might scale more broadly to explain performance in visual comparison.