-
pdf Observations and Reflections on Visualization Literacy at the Elementary School Level ↗
Click to read abstract
In this article, we share our reflections on visualization literacy and how it might be better developed in early education. We base this on lessons we learned while studying how teachers instruct, and how members acquire basic visualization principles and skills in elementary school. We use these findings to propose directions for future research on visualization literacy.
-
pdf Dynamic Insets for Context-Aware Graph Navigation ↗
Click to read abstract
Maintaining both overview and detail while navigating in graphs, such as road networks, airline route maps, or social networks, is difficult, especially when targets of interest are located far apart. We present a navigation technique called Dynamic Insets that provides context awareness for graph navigation. Dynamic insets utilize the topological structure of the network to draw a visual inset for off-screen nodes that shows a portion of the surrounding area for links leaving the edge of the screen. We implement dynamic insets for general graph navigation as well as geographical maps. We also present results from a set of user studies that show that our technique is more efficient than most of the existing techniques for graph navigation in different networks.
-
pdf Mélange: Space Folding for Visual Exploration ↗
Click to read abstract
Navigating in large geometric spaces---such as maps, social networks, or long documents---typically require a sequence of pan and zoom actions. However, this strategy is often ineffective and cumbersome, especially when trying to study and compare several distant objects. We propose a new distortion technique that folds the intervening space to guarantee visibility of multiple focus regions. The folds themselves show contextual information and support unfolding and paging interactions. We conducted a study comparing the space-folding technique to existing approaches, and found that participants performed significantly better with the new technique. We also describe how to implement this distortion technique, and give an in-depth case study on how to apply it to the visualization of large-scale 1D time-series data.
-
pdf Mélange: Space Folding for Multi-Focus Interaction ↗
Click to read abstract
Interaction and navigation in large geometric spaces typically require a sequence of pan and zoom actions. This strategy is often ineffective and cumbersome, especially when trying to study several distant objects. We propose a new distortion technique that folds the intervening space to guarantee visibility of multiple focus regions. The folds themselves show contextual information and support unfolding and paging interactions. Compared to previous work, our method provides more context and distance awareness. We conducted a study comparing the space-folding technique to existing approaches, and found that participants performed significantly better with the new technique.
-
pdf ZAME: Interactive Large-Scale Graph Visualization ↗
Click to read abstract
We present the Zoomable Adjacency Matrix Explorer (ZAME), a visualization tool for exploring graphs at a scale of millions of nodes and edges. ZAME is based on an adjacency matrix graph representation aggregated at multiple scales. It allows analysts to explore a graph at many levels, zooming and panning with interactive performance from an overview to the most detailed views. Several components work together in the ZAME tool to make this possible. Efficient matrix ordering algorithms group related elements. Individual data cases are aggregated into higher-order meta representations. Aggregates are arranged into a pyramid hierarchy that allows for on-demand paging to GPU shader programs to support smooth multiscale browsing. Using ZAME, we are able to explore the entire French Wikipedia---over 500,000 articles and 6,000,000 links---with interactive performance on standard consumer-level computer hardware.
-
pdf 20 Years of Four HCI Conferences: A Visual Exploration ↗
Click to read abstract
We present a visual exploration of the field of human–computer interaction (HCI) through the author and article metadata of four of its major conferences: the ACM conferences on Computer-Human Interaction (CHI), User Interface Software and Technology, and Advanced Visual Interfaces and the IEEE Symposium on Information Visualization. This article describes many global and local patterns we discovered in this data set, together with the exploration process that produced them. Some expected patterns emerged, such as that---like most social networks---coauthorship and citation networks exhibit a power-law degree distribution, with a few widely collaborating authors and highly cited articles. Also, the prestigious and long-established CHI conference has the highest impact (citations by the others). Unexpected insights included that the years when a given conference was most selective are not correlated with those that produced its most highly referenced articles and that influential authors have distinct patterns of collaboration. An interesting sidelight is that methods from the HCI field---exploratory data analysis by information visualization and direct-manipulation interaction---proved useful for this analysis. They allowed us to take an open-ended, exploratory approach, guided by the data itself. As we answered our original questions, new ones arose; as we confirmed patterns we expected, we discovered refinements, exceptions, and fascinating new ones.