-
pdf Code Code Evolution: Understanding How People Change Data Science Notebooks Over Time ↗
Click to read abstract
Sensemaking is the iterative process of identifying, extracting, and explaining insights from data, where each iteration is referred to as the “sensemaking loop.” However, little is known about how sensemaking behavior evolves from exploration and explanation during this process. This gap limits our ability to understand the full scope of sensemaking, which in turn inhibits the design of tools that support the process. We contribute the first mixed-method to characterize how sensemaking evolves within computational notebooks. We study 2,574 Jupyter notebooks mined from GitHub by identifying data science notebooks that have undergone significant iterations, presenting a regression model that automatically characterizes sensemaking activity, and using this regression model to calculate and analyze shifts in activity across GitHub versions. Our results show that notebook authors participate in various sensemaking tasks over time, such as annotation, branching analysis, and documentation. We use our insights to recommend extensions to current notebook environments.
-
pdf Accessible Data Representation with Natural Sound ↗
Click to read abstract
Sonification translates data into non-speech audio. Such auditory representations can make data visualization accessible to people who are blind or have low vision (BLV). This paper presents a sonification method for translating common data visualization into a blend of natural sounds. We hypothesize that people's familiarity with sounds drawn from nature, such as birds singing in a forest, and their ability to listen to these sounds in parallel, will enable BLV users to perceive multiple data points being sonified at the same time. Informed by an extensive literature review and a preliminary study with 5 BLV participants, we designed an accessible data representation tool, Susurrus, that combines our sonification method with other accessibility features, such as keyboard interaction and text-to-speech feedback. Finally, we conducted a user study with 12 BLV participants and report the potential and application of natural sounds for sonification compared to existing sonification tools.
-
pdf Perceptual Pat: A Virtual Human Visual System for Iterative Visualization Design ↗
Click to read abstract
Designing a visualization is often a process of iterative refinement where the designer improves a chart over time by adding features, improving encodings, and fixing mistakes. However, effective design requires external critique and evaluation. Unfortunately, such critique is not always available on short notice and evaluation can be costly. To address this need, we present Perceptual Pat, an extensible suite of AI and computer vision techniques that forms a virtual human visual system for supporting iterative visualization design. The system analyzes snapshots of a visualization using an extensible set of filters—including gaze maps, text recognition, color analysis, etc—and generates a report summarizing the findings. The web-based Pat Design Lab provides a version tracking system that enables the designer to track improvements over time. We validate Perceptual Pat using a longitudinal qualitative study involving 4 professional visualization designers that used the tool over a few days to design a new visualization
-
pdf Through Their Eyes and In Their Shoes: Providing Group Awareness During Collaboration Across Virtual Reality and Desktop Platforms ↗
Click to read abstract
Many collaborative data analysis situations benefit from collaborators utilizing different platforms. However, maintaining group awareness between team members using diverging devices is difficult, not least because common ground diminishes. A person using head-mounted VR cannot physically see a user on a desktop computer even while co-located, and the desktop user cannot easily relate to the VR user's 3D workspace. To address this, we propose the 'eyes-and-shoes' principles for group awareness and abstract them into four levels of techniques. Furthermore, we evaluate these principles with a qualitative user study of 6 participant pairs synchronously collaborating across distributed desktop and VR head-mounted devices. In this study, we vary the group awareness techniques between participants and explore two visualization contexts within participants. The results of this study indicate that the more visual metaphors and views of participants diverge, the greater the level of group awareness is needed. A ✚ Copy of this paper, the study preregistration, and all supplemental materials required to reproduce the study are available on https://osf.io/wgprb/.
-
pdf uxSense: Supporting User Experience Analysis with Visualization and Computer Vision ↗
Click to read abstract
Analyzing user behavior from usability evaluation can be a challenging and time-consuming task, especially as the number of participants and the scale and complexity of the evaluation grows. We propose UXSENSE, a visual analytics system using machine learning methods to extract user behavior from audio and video recordings as parallel time-stamped data streams. Our implementation draws on pattern recognition, computer vision, natural language processing, and machine learning to extract user sentiment, actions, posture, spoken words, and other features from such recordings. These streams are visualized as parallel timelines in a web-based front-end, enabling the researcher to search, filter, and annotate data across time and space. We present the results of a user study involving professional UX researchers evaluating user data using uxSense. In fact, we used uxSense itself to evaluate their sessions.
-
pdf TimberSleuth: Visual Anomaly Detection with Human Feedback for Mitigating the Illegal Timber Trade ↗
Click to read abstract
Detecting illegal shipments in the global timber trade poses a massive challenge to enforcement agencies. The massive volume and complexity of timber shipments and obfuscations within international trade data, intentional or not, necessitates an automated system to aid in detecting specific shipments that potentially contain illegally harvested wood. To address these requirements we build a novel human-in-the-loop visual analytics system called TIMBERSLEUTH. TimberSleuth uses a novel scoring model reinforced through human feedback to improve upon the relevance of the results of the system while using an off-the-shelf anomaly detection model. Detailed evaluation is performed using real data with synthetic anomalies to test the machine intelligence that drives the system. We design interactive visualizations to enable analysis of pertinent details of anomalous trade records so that analysts can determine if a record is relevant and provide iterative feedback. This feedback is utilized by the machine learning model to improve the precision of the output.